0%

BMS-BOCF analyzing

Mainly using BOCF with \(M\), the recursive Mahlo ordinal. For ordinals less than \(\mathrm{BHO} = \psi(\Omega_2)\), normal notation with extended Veblen’s function is also used.

Contents:

  1. part 1, to \(\mathrm{SCO}\)
  2. part 2, to \(\mathrm{FSO}\)
  3. part 3, to \(\mathrm{LVO}\)
  4. part 4, to \(\mathrm{BHO}\)
  5. part 5, to \(\mathrm{BO}\)

finite ordinals (\(0\) ~ \(\mathrm{FTO} = \omega\))

BMS BOCF normal notation, NN
\(\emptyset\) \(0\) \(0\)
\(()\) \(\psi(0)\) \(1\)
\(()()\) \(\psi(0)2\) \(2\)
\(()()()\) \(\psi(0)3\) \(3\)
\(()(1)\) \(\psi(\psi(0))\) \(\mathrm{FTO} = \omega\)

one-row BMS, PrSS (\(\omega\) ~ \(\mathrm{SCO} = \varepsilon_0\))

\(\omega\) ~ \(\omega^2\)

BMS BOCF NN
\(()(1)\) \(\psi(\psi(0))\) \(\omega\)
\(()(1)()\) \(\psi(\psi(0))+\psi(0)\) \(\omega+1\)
\(()(1)()()\) \(\psi(\psi(0))+\psi(0)2\) \(\omega+2\)
\(()(1)()(1)\) \(\psi(\psi(0))2\) \(\omega 2\)
\(()(1)()(1)()\) \(\psi(\psi(0))2+\psi(0)\) \(\omega 2+1\)
\(()(1)()(1)()(1)\) \(\psi(\psi(0))3\) \(\omega 3\)
\(()(1)(1)\) \(\psi(\psi(0)2)\) \(\omega^2\)

\(\omega^2\) ~ \(\omega^\omega\)

BMS BOCF NN
\(()(1)(1)\) \(\psi(\psi(0)2)\) \(\omega^2\)
\(()(1)(1)()\) \(\psi(\psi(0)2)+\psi(0)\) \(\omega^2+1\)
\(()(1)(1)()(1)\) \(\psi(\psi(0)2)+\psi(\psi(0))\) \(\omega^2+\omega\)
\(()(1)(1)()(1)()(1)\) \(\psi(\psi(0)2)+\psi(\psi(0))2\) \(\omega^2+\omega 2\)
\(()(1)(1)()(1)(1)\) \(\psi(\psi(0)2)2\) \(\omega^2 2\)
\(()(1)(1)()(1)(1)()(1)(1)\) \(\psi(\psi(0)2)3\) \(\omega^2 3\)
\(()(1)(1)(1)\) \(\psi(\psi(0)3)\) \(\omega^3\)
\(()(1)(1)(1)()\) \(\psi(\psi(0)3)+\psi(0)\) \(\omega^3+1\)
\(()(1)(1)(1)()(1)\) \(\psi(\psi(0)3)+\psi(\psi(0))\) \(\omega^3+\omega\)
\(()(1)(1)(1)()(1)(1)\) \(\psi(\psi(0)3)+\psi(\psi(0)2)\) \(\omega^3+\omega^2\)
\(()(1)(1)(1)()(1)(1)(1)\) \(\psi(\psi(0)3)2\) \(\omega^3 2\)
\(()(1)(1)(1)(1)\) \(\psi(\psi(0)4)\) \(\omega^4\)
\(()(1)(2)\) \(\psi(\psi(\psi(0)))\) \(\omega^\omega\)

\(\omega^\omega\) ~ \(\omega^{\omega^2}\)

Using \(1 = \psi(0)\) in BOCF.

BMS BOCF NN
\(()(1)(2)\) \(\psi(\psi(1))\) \(\omega^\omega\)
\(()(1)(2)()\) \(\psi(\psi(1))+1\) \(\omega^\omega+1\)
\(()(1)(2)()(1)\) \(\psi(\psi(1))+\psi(1)\) \(\omega^\omega+\omega\)
\(()(1)(2)()(1)(1)\) \(\psi(\psi(1))+\psi(2)\) \(\omega^\omega+\omega^2\)
\(()(1)(2)()(1)(2)\) \(\psi(\psi(1))2\) \(\omega^\omega 2\)
\(()(1)(2)(1)\) \(\psi(\psi(1)+1)\) \(\omega^{\omega+1}\)
\(()(1)(2)(1)()(1)(2)\) \(\psi(\psi(1)+1)+\psi(\psi(1))\) \(\omega^{\omega+1}+\omega^\omega\)
\(()(1)(2)(1)()(1)(2)(1)\) \(\psi(\psi(1)+1)2\) \(\omega^{\omega+1} 2\)
\(()(1)(2)(1)(1)\) \(\psi(\psi(1)+2)\) \(\omega^{\omega+2}\)
\(()(1)(2)(1)(2)\) \(\psi(\psi(1)2)\) \(\omega^{\omega 2}\)
\(()(1)(2)(1)(2)()(1)(2)(1)(2)\) \(\psi(\psi(1)2)2\) \(\omega^{\omega 2} 2\)
\(()(1)(2)(1)(2)(1)\) \(\psi(\psi(1)2+1)\) \(\omega^{\omega 2+1}\)
\(()(1)(2)(1)(2)(1)(1)\) \(\psi(\psi(1)2+2)\) \(\omega^{\omega 2+2}\)
\(()(1)(2)(1)(2)(1)(2)\) \(\psi(\psi(1)3)\) \(\omega^{\omega 3}\)
\(()(1)(2)(2)\) \(\psi(\psi(2))\) \(\omega^{\omega^2}\)

\(\omega^{\omega^2}\) ~ \(\mathrm{SCO} = \varepsilon_0\)

Using \(\omega= \psi(1)\) in BOCF.

BMS BOCF NN
\(()(1)(2)(2)\) \(\psi(\psi(2))\) \(\omega^{\omega^2}\)
\(()(1)(2)(2)(1)\) \(\psi(\psi(2)+1)\) \(\omega^{\omega^2+1}\)
\(()(1)(2)(2)(1)(2)\) \(\psi(\psi(2)+\omega)\) \(\omega^{\omega^2+\omega}\)
\(()(1)(2)(2)(1)(2)(1)(2)\) \(\psi(\psi(2)+\omega 2)\) \(\omega^{\omega^2+\omega 2}\)
\(()(1)(2)(2)(1)(2)(2)\) \(\psi(\psi(2)+\psi(2))\) \(\omega^{\omega^2 2}\)
\(()(1)(2)(2)(2)\) \(\psi(\psi(3))\) \(\omega^{\omega^3}\)
\(()(1)(2)(3)\) \(\psi(\psi(\omega))\) \(\omega^{\omega^\omega}\)
\(()(1)(2)(3)(1)\) \(\psi(\psi(\omega)+1)\) \(\omega^{\omega^\omega+1}\)
\(()(1)(2)(3)(1)(2)\) \(\psi(\psi(\omega)+\omega)\) \(\omega^{\omega^\omega+\omega}\)
\(()(1)(2)(3)(1)(2)(3)\) \(\psi(\psi(\omega)2)\) \(\omega^{\omega^{\omega 2}}\)
\(()(1)(2)(3)(4)\) \(\psi(\psi(\psi(\omega)))\) \(\omega^{\omega^{\omega^\omega}}\)
\(()(1,1)\) \(\psi(\psi_1(0))\) \(\mathrm{SCO} = \varepsilon_0\)

next part