0%

\[ \newcommand{\ci}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\N}{\mathbb{N}} \newcommand{\eps}{\varepsilon} \newcommand{\dsum}{\displaystyle\sum} \]

Abstract

This article develops the exponential and trigonometric functions from first principles using infinite series, avoiding reliance on geometric intuition or pre-existing notions of angle. Motivated by foundational concerns raised in early twentieth-century analysis, the construction is carried out directly on the complex plane. After establishing the algebraic structure and completeness of \(\C\) as a normed vector space, basic results on complex series are proved, including absolute convergence and a Fubini-type theorem. The exponential function is then defined by its power series, shown to be well-defined on \(\C\), and its fundamental properties—such as the exponent law, positivity on \(\R\), and monotonicity—are derived. Trigonometric functions are introduced via the complex exponential, leading naturally to Euler’s formula, addition formulas, and the Pythagorean identity. This approach demonstrates that the classical properties of exponential and trigonometric functions arise purely from analytic and algebraic considerations, without geometric assumptions.

Read more »

ACMOJ链接

形式化题意

给定长度为 \(n\) 的字母序列 \(S\) ,和长度为 \(m\) 的字母序列 \(T\) ,求 \(S\) 中和 \(T\) 相似的子串有多少个,相似代表离散化后一致,即每一个对应位置字符的序关系保持一致。

Read more »

原知乎回答

前言

两年前一位姚班大神学长回到高中母校并出了这样一道题:抢红包。

\(10\) 个人抢价值 \(10\) 元的红包,手气最佳同学抢到的红包的期望是多少?

注意这里是最大值,而最大值问题其实要比最小值问题难。当时我硬用积分和一些奇技淫巧给出了最小值的解答—— \(\dfrac{1}{10}\) 。而后大神给出了一个非常漂亮的解答,在这个解答中给出了任意排名的红包期望值。

为了尽量严谨化题意,他给出了一个等价的问题:

一段长为 \(n\) 的环形绳子,随机地切 \(n\) 刀,最长的一段长度的期望是多少?

Read more »